Ricercar: A Language for Describing and Rewriting Reversible Circuits with Ancillae and Its Permutation Semantics

نویسندگان

  • Michael Kirkedal Thomsen
  • Robin Kaarsgaard
  • Mathias Soeken
چکیده

Previously, Soeken and Thomsen presented six basic semantics-preserving rules for rewriting reversible logic circuits, defined using the well-known diagrammatic notation of Feynman. While this notation is both useful and intuitive for describing reversible circuits, its shortcomings in generality complicates the specification of more sophisticated and abstract rewriting rules. In this paper, we introduce Ricercar, a general textual description language for reversible logic circuits designed explicitly to support rewriting. Taking the not gate and the identity gate as primitives, this language allows circuits to be constructed using control gates, sequential composition, and ancillae, through a notion of ancilla scope. We show how the above-mentioned rewriting rules are defined in this language, and extend the rewriting system with five additional rules to introduce and modify ancilla scope. This treatment of ancillae addresses the limitations of the original rewriting system in rewriting circuits with ancillae in the general case. To set Ricercar on a theoretical foundation, we also define a permutation semantics over symmetric groups and show how the operations over permutations as transposition relate to the semantics of the language.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classical Propositional Logic for Reasoning About Reversible Logic Circuits

We propose a syntactic representation of reversible logic circuits in their entirety, based on Feynman’s control interpretation of Toffoli’s reversible gate set. A pair of interacting proof calculi for reasoning about these circuits is presented, based on classical propositional logic and monoidal structure, and a natural order-theoretic structure is developed, demonstrated equivalent to Boolea...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

Minimal universal library for n×n reversible circuits

Reversible logic plays an important role in quantum computing. Several papers have been recently published on universality of sets of reversible gates. However, a fundamental unsolved problem remains: “what is the minimum set of gates that are universal for n-qubit circuits without ancillae bits”. We present a library of 2 gates which is sufficient to realize all reversible circuits of n variab...

متن کامل

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

Designing of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1

Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015